
Abstract parallel dynamical kernels for flexible

climate models

V. Balaji
SGI/GFDL

ECMWF TeraComputing Workshop
16 November 2000

1



GFDL

GFDL is a climate modeling centre. The primary focus is the use of coupled
climate models for simulations of climate variability and climate change on
short and long time scales.

Current computing capability: Cray T90 24p, T3E 128p.

Future computing capability: � � �� � � � � �� p Origin 3000.

2



GFDL models

� MOM: Modular Ocean Model.

� FMS: Flexible Modeling System.

� Hurricane model.

� HIM: isopycnal model.

� 2 non-hydrostatic atmospheric models.

� Older models: SKYHI, Supersource.

3



Modernization

� Parallelism without compromising vector performance.

� Modular design for interchangeable dynamical cores and physical pa-
rameterizations. Several dynamical cores are currently available.

� Distributed development model: many contributing authors. Use high-
level abstract language features for encapsulation, polymorphism.

4



FMS: Flexible Modeling System
Dynamical cores:

� Atmosphere:

– Hydrostatic spectral

– Hydrostatic Arakawa B grid

– Hydrostatic Arakawa C grid (*)

– Non-hydrostatic Arakawa C grid (*)

� Ocean:

– B grid

– C grid (*)

– Generalized vertical coordinate (*)

5



FMS: Physical processes

� Atmosphere:

– Deep convection.

– Shallow convection.

– Moist processes.

– Cloud mass flux.

– Ozone, CFCs, greenhouse gases.

– Radiation.

– Turbulence.

– Planetary boundary layer.

– Land surface, ocean surface.

6



Climate models

Climate models solve the initial value problem of integrating forward in time the state

of all the components of the planetary climate system. The underlying dynamics is the

solution of the non-linear Navier-Stokes equation on a sphere. While the dynamics itself

is the same for a wide variety of problems, resolutions and lengths of integration vary over

several orders of magnitude of time and space scales. Efficient integration for different

problems require different representations of the basic numerical kernels, which may also

be a function of the underlying computer architecture on which the simulations are done.

7



Abstraction

Modern languages such as Fortran 90 and C++ offer the possibility of ab-
stract representations of the the basic dynamical operators. These abstrac-
tions offer a large measure of flexibility in the dynamical operator code,
without requiring large-scale rewriting for different problem sizes and ar-
chitectures. The cost of this abstraction is a function of the maturity of the
compiler as well as the language design.

8



Class libraries

Class libraries offer a clean, modular, extensible approach to building mod-
els using the components that most resemble the conceptual categories of
the modeled system. In contrast to a traditional library, which provides a
set of subroutines fulfilling certain needs, a class library defines a class of
objects that you wish to work with, and the methods for those objects.

A well-kept secret is that f90 modules allow one to build class libraries,
having most of the useful features, but few of the current performance dis-
advantages of OO languages (C++, Java).

9



Overview

� Abstract representation of parallelism

� Parallel shallow water model example

� Derived types, user-defined assignment and operators

� Treatment of halo regions

� f90 issues (pointers, etc)

� Comparison with C++

10



mpp domains mod: domain class library
Definition of domain:

� Global domain: the entire model grid.

� Compute domain: set of points calculated by a PE.

� Data domain: set of points required by the computation (i.e including halo).

All the information required for domain-related operations are maintained in compact form

in the domain types supplied by mpp domains mod. Complicated grids, such as the bipo-

lar grid and the cubed sphere can be represented in this class, so long as they are logically

rectilinear.

11



The domain type
type, public :: domain_axis_spec

integer :: start_index, end_index, size, max_size
logical :: is_global

end type domain_axis_spec
type, public :: domain1D

type(domain_axis_spec) :: compute, data, global
integer :: ndomains
integer :: pe
integer, dimension(:), pointer :: pelist
type(domain1D), pointer :: prev, next

end type domain1D

12



!domaintypes of higher rank can be constructed from type domain1D
type, public :: domain2D

sequence
type(domain1D) :: x
type(domain1D) :: y
integer :: pe
type(domain2D), pointer :: west, east, south, north

end type domain2D

(1,1)

(ni,nj)

(is,js)

(ie,je)

13



mpp domains mod calls:

� mpp_define_domains()

� mpp_update_domains()

type(domain2D) :: domain(0:npes-1)
call mpp_define_domains( (/1,ni,1,nj/), domain, xhalo=2, yhalo=2 )
...
!allocate f(i,j) on data domain
!compute f(i,j) on compute domain
...
call mpp_update_domains( f, domain(pe) )

14



Parallel numerical kernels
��� �� � ���

� �

� � 	 
�� 
 � �� (1)

� � �� � � �
� �

� � � 
 � � �� �� � � k �
�

� � � � � � �
� �
� F (2)

program shallow_water
type(scalar2D) :: eta(0:1)
type(hvector2D) :: utmp, u, forcing
integer tau=0, taup1=1

...
f2 = 1./(1.+dt*dt*f*f)
do l = 1,nt

eta(taup1) = eta(tau) - (dt*h)*div(u)
utmp = u - (dt*g)*grad(eta(taup1)) + (dt*f)*kcross(u) + dt*forcing
u = f2*( utmp + (dt*f)*kcross(utmp) )
tau = 1 - tau
taup1 = 1 - taup1

end do
end program shallow_water

15



� Runs and reproduces answers on t90, t3e, SGI, Beowulf.

� No parallel calls.

� Memory scaling (except for halo region overhead).

� 400 Mflops, 800 Mmops, on t90 �� � � �� � .

� 80% scaling on � � � PEs on t3e.

� Abstraction penalty about 20% on MOM 2p.

� Standard f90 (Cray, SGI, PGF90...)

16



The distributed grid class
module distributed_grids
use mpp_domains_mod
implicit none
private
type, public :: scalar2D

real, pointer :: data(:,:)
integer :: is, ie, js, je

end type scalar2D
type, public :: hvector2D

type(scalar2D) :: x, y
integer :: is, ie, js, je

end type hvector2D

� Modules provide protected namespaces and data-hiding.

� User-defined types provide data encapsulation.

� use statements provide inheritance.

17



Scalar field

type, public :: scalar2D

real, pointer :: data(:,:)

integer :: is, ie, js, je

end type scalar2D

� Type component arrays in f90/95 must be pointer or static. This is
being remedied in f2k. Allocatable type components will be available
in cf90 3.5.

� is, ie, js, je contain the active domain. This information can be
used to decide when a call to mpp_update_domains is required.

18



Assignment of derived types
type(scalar2D) :: a, b, c
...
a = b

f90 provides an intrinsic assignment of derived types (“automatic inheritance”). However,
there is a problem in that the standard specifies that pointers must be redirected by an
assignment. Thus, certain constructs may not work as expected:

!interchange a and b
c = a
a = b
b = c

Also, this will begin to work as expected with allocatable components!

19



User-defined assignment

interface assignment(=)
!copy

module procedure copy_scalar2D_to_scalar2D
module procedure copy_hvector2D_to_hvector2D

!assign arrays of various ranks to grid field types
!scalar2D

module procedure assign_0D_to_scalar2D
module procedure assign_2D_to_scalar2D

!hvector
module procedure assign_2D_to_hvector2D

end interface

f90 requires the procedure to be a subroutine with exactly two arguments:
an intent(inout) LHS and an intent(in) RHS.

20



User-defined operators

use distributed_grids
type(scalar2D) :: a, b, c
...
c = a + b
...
module distributed_grids
interface operator(+)

module procedure add_scalar2D
module procedure add_hvector2D
module procedure add_scalar3D
module procedure add_hvector3D

end interface

f90 requires the procedure to be a function with exactly two arguments,
both intent(in).

21



add scalar2D
function add_scalar2D( a, b )

type(scalar2D) :: add_scalar2D
type(scalar2D), intent(in) :: a, b
add_scalar2D%data => work2D(:,:,nbuf2)

!addition is done on valid domain
add_scalar2D%is = max(a%is,b%is)
add_scalar2D%ie = min(a%ie,b%ie)
add_scalar2D%js = max(a%js,b%js)
add_scalar2D%je = min(a%je,b%je)

!dir$ IVDEP
do j = add_scalar2D%js,add_scalar2D%je

do i = add_scalar2D%is,add_scalar2D%ie
work2D(i,j,nbuf2) = a%data(i,j) + b%data(i,j)

end do
end do
nbuf2 = mod( nbuf2+1,nbufs )
return

end function add_scalar2D

22



add scalar2D design issues: allocation

The function result is effectively intent(out).

� Space can’t be borrowed from the LHS, since you might have c = a
+ b or d = (a + b) + c.

� Allocating space for pointers is a) slow; b) potentially leaky.

real, pointer :: a(:)
allocate( a(100) )
...
a => b(1:100)

� Use of internal buffers seems to be the correct solution.

23



add scalar2D design issues: allocation
subroutine grid_domain_init

...
allocate( work2D(isd:ied,jsd:jed,nbufs) )

function add_scalar2D( a, b )
type(scalar2D) :: add_scalar2D
type(scalar2D), intent(in) :: a, b
add_scalar2D%data => work2D(:,:,nbuf2)

...
nbuf2 = mod( nbuf2+1, nbufs )

end function add_scalar2D

nbufs must be greater than the length of your longest chain.

a = b + c + d + e + f ... !probably only requires 2 buffers
a = (b + c) + (((d + e) + f) + (g + h))

24



add scalar2D design issues: aliasing

!dir$ IVDEP

do j = add_scalar2D%js,add_scalar2D%je

do i = add_scalar2D%is,add_scalar2D%ie

work2D(i,j,nbuf2) = a%data(i,j) + b%data(i,j)

end do

end do

Since arguments are pointers, the compiler cannot know whether they
point to the same or different memory. IVDEP provides a hint.

25



add scalar2D design issues: active domains

The function result is effectively intent(out).

!addition is done on active domain

add_scalar2D%is = max(a%is,b%is)

add_scalar2D%ie = min(a%ie,b%ie)

add_scalar2D%js = max(a%js,b%js)

add_scalar2D%je = min(a%je,b%je)

� All operators act on active domain, which includes all points in the data
domain that contain valid data.

� Sum is done over intersection of active domains.

26



Inheritance
type, public :: hvector2D

type(scalar2D) :: x, y
integer :: is, ie, js, je

end type hvector2D
...

function add_hvector2D( a, b )
type(hvector2D) :: add_hvector2D
type(hvector2D), intent(in) :: a, b
add_hvector2D%x = a%x + b%x
add_hvector2D%y = a%y + b%y
add_hvector2D%is = add_hvector2D%x%is
add_hvector2D%ie = add_hvector2D%x%ie
add_hvector2D%js = add_hvector2D%x%js
add_hvector2D%je = add_hvector2D%x%je
return

end function add_hvector2D

27



div and grad

� � ��� � � �	� 
 � � �
 �	� � � (3)

� �
 � �� � � �
 
 � (4)

� �
 �
 � �
 �
 � � (5)

�

�


 � �
� � �

28



function grad_scalar2D(scalar)
type(hvector2D) :: grad_scalar2D
type(scalar2D), intent(inout) :: scalar

...
if( scalar%ie.LE.ie .OR. scalar%je.LE.je )then

call mpp_update_domains( scalar%data, domain, EUPDATE+NUPDATE )
scalar%ie = ied
scalar%je = jed

end if
grad_scalar2D%is = scalar%is; grad_scalar2D%ie = scalar%ie - 1
grad_scalar2D%js = scalar%js; grad_scalar2D%je = scalar%je - 1

!dir$ IVDEP
do j = grad_scalar2D%js,grad_scalar2D%je

do i = grad_scalar2D%is,grad_scalar2D%ie
tmp1 = scalar%data(i+1,j+1) - scalar%data(i,j)
tmp2 = scalar%data(i+1,j) - scalar%data(i,j+1)
work2D(i,j,nbuf2) = gradx(i,j)*( tmp1 + tmp2 )
work2D(i,j,nbufy) = grady(i,j)*( tmp1 - tmp2 )

end do
end do

29



Features of differencing operators

� Details of numerics are hidden from high-level code.

� Highly optimized numerical kernels without sacrificing readability.

� Extensible: can overload different algorithms as required or desired.

� Grid metrics are set once, at initialization.

� Update domains only as required, with no user intervention, including one-sided
updates.

� Builtin use of wide halos for balancing computation with communication.

30



Wide halos
On a machine with a slow interconnect, we can choose to replace communication by
redundant computation:

� Points in the active domain may be computed on more than one PE.

� Active domain is reduced until there are not enough points left to update the compu-
tational domain.

� Then update halos. This may only occur once every several timesteps.

call mpp_update_domains( ..., xhalo=1, yhalo=1 )
call mpp_update_domains( ..., xhalo=6, yhalo=6 )

31



Comparison with C++
“With the advent of f90, we finally have a compiler that runs as slow as C++.”

Features of f90 we use:

� Class libraries with objects and methods.

� Namespaces and data hiding.

� Inheritance.

� Polymorphism.

“f90 is C++ with fast computational kernels.”

32



MEME: Modular Extensible Modeling

Environment

� Open class libraries tailored to particular scientific fields offer a way to develop exten-
sible modeling environments for a large multi-institutional user/developer community.

– Layered approach protects users from unnecessary detail.

– Classes can be extended without too much pain and suffering.

– Computational kernels can be added as necessary.

� Requires close collaboration between users, compiler writers, language standards
committees.

33


